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Abstract: Agriculture is essential to a flourishing economy. Although soil is essential for sustainable 1

food production, its quality can decline as cultivation becomes more intensive and demand increases. 2

The importance of healthy soil cannot be overstated, as a lack of nutrients can significantly lower crop 3

yield. Smart soil prediction and digital soil mapping offer accurate data on soil nutrient distribution 4

needed for precision agriculture. Machine learning techniques are now driving intelligent soil 5

prediction systems. This article provides a comprehensive analysis of the use of machine learning 6

in predicting soil qualities. The components and qualities of soil, the prediction of soil parameters, 7

the existing soil data set, the soil map, the effect of soil nutrients on crop growth, as well as the soil 8

information system, are the key subjects under inquiry. Smart agriculture, as exemplified by this 9

study, can improve food quality and productivity. 10

Keywords: Machine learning; Digital Soil Mapping; Soil properties, Smart Soil 11

1. Introduction 12

Without a doubt, technological advancements have dramatically improved the effi- 13

ciency and productivity of numerous industries, including agriculture. Examples of this 14

revolution in technology include the introduction of such terms as "big data," "data analyt- 15

ics," "artificial intelligence," "Internet of Things," "erosion modeling," "smart farming," and 16

"machine learning" [1–4]. To develop and populate spatial soil information systems, Digital 17

Soil Mapping (DSM) applies numerical models to infer the geographical and temporal 18

variations of soil types and attributes based on soil observations, prior knowledge, and 19

pertinent environmental variables [5]. 20

Even though the above ideas have been utilized in many ways, agriculture technology 21

is continually evolving. Fertilizer and weed application, irrigation management, and 22

soil mapping all involve information technology. AI models are becoming increasingly 23

crucial to smart agriculture’s long-term success. In agriculture, AI is used in soil and 24

irrigation management, weather forecasting, plant growth, disease prediction, and animal 25

management [6]. Smart farming, in contrast to traditional farming, makes use of state- 26

of-the-art innovations to boost productivity and reduce labor stress in response to the 27

exponential growth and development of data processing, information technology, and 28

artificial intelligence, automating soil and crop management with AI that mimics the way 29

humans learn and solve problems [7]. 30

Artificial intelligence (AI) applied to soil prediction is vital in agriculture since soil 31

composition impacts crop yields in many ways. Soil prediction involves using several 32

methods to evaluate if the soil is suitable for a crop before planting it. Smart soil prediction 33

is a result of new technology. Smart soil prediction is a low-cost way to anticipate a soil’s 34

performance across many crops. Digital Soil Mapping (DSM) creates digital soil type and 35
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quality maps using numerical and statistical models that combine soil sensing data with 36

environmental parameters [8]. Recent years have seen a dramatic increase in DSM activi- 37

ties within the field of soil science, which can be attributed to the comingling of several 38

ideal elements, including, but not limited to, massive interest in quantitative and spatial 39

soil information, the accumulation of databases of estimated or construed soil properties 40

combined with thoroughly known environmental variables, and the development of nu- 41

merical models combined with computer resources to mine these stores of soil data [9]. 42

For supplying the crop model soil input data, DSM can be used instead of choropleth soil 43

maps. For mapping soil parameters at controlled prices, the DSM provides an alternative 44

to traditional soil surveys. [10]. Acquiring precise soil nutrient distribution data is a crucial 45

step in the implementation of precision agriculture, and digital soil mapping is a promising 46

innovation [11]. Several Artificial Intelligence tools, such as fuzzy systems, decision trees, 47

expert knowledge, machine learning algorithms, deep learning methods, and others, can 48

offer more precise forecasts and solutions in DSM. As shown in Figure 1, there are four 49

major processes for evaluating model and map performance in DSM. The first step is to 50

train the model with the dataset (to ensure goodness of fit), the second step is to test the 51

model performance with cross-validation (to ensure robustness), the third step is to test 52

the map validation within a similar geographic degree with an independent dataset, and 53

the fourth step is to test the model’s adaptability in an alternate geographic region with a 54

second independent dataset [12].

Figure 1. Conceptual View of Assessing Model and Map performance in DSM [12]
55

Artificial intelligence models and digital soil mapping have been used in the past to 56

predict soil fertility, providing a decision-making tool capable of predicting the most suited 57

crops to plant based on soil pH, soil nutrients, soil moisture, environmental variables, and 58

other factors [13]. For precision farming, machine learning and deep learning algorithms 59

are the most frequently used types of artificial intelligence.[14]. The lack of widespread 60

adoption of digital soil mapping and other digital innovative solutions is a barrier to high 61

productivity in Agricultural Systems in developing countries, despite the fact that its use 62

has been on the rise internationally. As a result, the primary objective of this research is to 63

investigate the issues that are impeding the deployment of smart soil information systems 64

in developing nations. Furthermore, this study elaborates on numerous examples of digital 65

soil mapping and artificial intelligence-based smart soil systems with emphases on the 66

following contributions: 67

1. Examining the smart agriculture and digital soil management landscape in developing 68

countries. 69

2. Existing research literature on soil attributes, classifications, and key components in 70

soil databases for soil fertility prediction 71

3. Identify and review the state-of-the-art Smart Soil system based on artificial Intelli- 72

gence models (machine learning and deep learning models). 73

4. Overview of the current issues in development and deployment of soil information 74

systems. 75
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5. Establishing a roadmap for future research to improve agricultural productivity with 76

DSM and other digital innovation technologies through the development of a Smart 77

soil information system. 78

The remaining sections of this systematic review are organized as follows. Section 2 79

examines soil components and qualities, while Section 3 focuses on the use of digital 80

soil mapping and intelligent soil management systems. Section 4 describes the materials 81

and methods employed in this study.Section 5 discusses existing soil information system 82

frameworks, current trends in soil information systems, and problems. Section 6 examines 83

the current state of AI models for soil property management and soil fertility prediction; 84

machine learning and deep learning algorithm applications and accuracy; and existing 85

smart soil mobile applications. Section 7 presents the research findings and discussion. 86

Section 8 provides the conclusion and future research directions. 87

2. Soil Components and Properties 88

Sustainable agricultural growth and enhanced crop yields are both feasible conse- 89

quences of land reclamation and productive resource management. Increased yields can be 90

obtained in intensive cropping by using adequate nutrition sources and application rates 91

[15]. Soil quality fundamentally means "the ability of a soil to function"; this ability can be 92

indicated by the estimated soil’s physical, chemical, and biological qualities, often known 93

as soil quality indicators (SQI) [16]. Several soil investigations may be envisaged to ade- 94

quately quantify soil framework, and science-based indices on SQI provide valuable data 95

to farm managers for decision-making. These indices incorporate important soil attributes, 96

including supplying suitable amounts of water and nutrients, resisting and recovering 97

from physical degradation, and supporting plant growth with the right management [17]. 98

Sustainable farmland management requires an in-depth familiarity with the relationships 99

between soil physical qualities and many agronomic and environmental factors[18]. The 100

availability of nutrients is influenced by the soil’s chemical and physical properties, such as 101

its parent material and naturally occurring minerals, organic matter, depth to bedrock, sand, 102

or gravel, permeability, water-holding capacity, and drainage. The distribution of nutrients 103

is also determined by plant and atmospheric conditions [19]. The nutrient concentration in 104

the soil solution is influenced by soil water content, depth, pH, cation-exchange capacity, 105

redox potential, soil organic matter, microbial activity, season, and fertilizer application 106

[20]. It is typically time-consuming and costly to estimate and evaluate soil components 107

and qualities. Predictive soil mapping is a common modeling approach used to estimate 108

the spatial distribution of soil components when actual data from samples are unavailable. 109

Many of these approaches rely on predictive maps or the estimation of soil-related variables 110

at unmeasured locations based on field data using mathematical or statistical models of 111

relationships between soil and other environmental elements[21]. 112

2.1. Soil Data set 113

To determine the nutrient level, composition, and other properties of a soil sample, 114

scientists conduct a soil test. Soil testing can involve a variety of techniques and fertilizer 115

recommendations to determine the soil’s fertility and pinpoint any deficiencies that need 116

to be addressed. Soil analysis provides information useful to farmers and consumers in 117

deciding when and how much fertilizer and farmyard manure should be administered 118

during a crop’s growth cycle [22]. Soil datasets entail information on land suitability for 119

agricultural production, soil maturity, soil texture, meteorological data, moisture content, 120

soil classes, soil colour, covariate data, soil nutrients, and trace elements. Table 1 lists the 121

most prevalent soil nutrients, trace elements, and their descriptions. 122

The utilisation of covariate environmental data facilitates the establishment of associations 123

between soil properties and various environmental factors. The process of soil formation 124

and its characteristics are impacted by several factors, including but not limited to climatic 125

conditions, topographical features, vegetation cover, land utilisation, and the nature of the 126

parent material. The integration of covariate data can enhance the efficacy of soil prediction 127
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models by enabling a more comprehensive understanding of the intricate interplay between 128

soil and its surrounding ecosystem. The inclusion of covariate environmental data is imper- 129

ative in soil prediction due to its ability to augment our comprehension of soil-environment 130

associations, capture spatial heterogeneity, offer insights into fundamental mechanisms, 131

enable data amalgamation, and facilitate informed decisions regarding land management. 132

The integration of covariate data into soil prediction models enhances their precision and 133

usefulness in diverse domains such as agriculture, environmental governance, and land 134

use management [23,24]. 135

Table 1. Description of Soil Nutrients and Trace Elements.

Symbol Meaning Units SPT

N Nitrogen % SN
P Phosphorus mg kg−1 SN
K Potassium cmol kg−1 SN
Ca Calcium cmol kg−1 SN
Mg Magnesium cmol kg−1 SN
S Sulphur ppm SN

Fe Iron ppm TE
Mn Manganese ppm TE
Cu Copper ppm TE
Zn Zinc ppm TE
B Boron ppm TE

Mo Molybdenum ppm TE

ESP Exchangeable sodium
percentage % SN

CEC Cation exchange
Capacity cmol kg−1 SN

Abbreviations: SN - Soil Nutrients, TE - Trace Elements, SPT - Soil Properties Type.

2.2. Soil map 136

Environmental elements pertaining to geology, landforms, or vegetation are identified 137

through the use of aerial photographs, Landsat images, and digital elevation models (DEMs) 138

in traditional digital soil mapping. The method is then checked against real-world data 139

[25]. The final outcome is a map labeled with soil classifications, which can be confusing 140

to users. Furthermore, there are other issues caused by mapping’s subjective character. 141

[26].In traditional soil surveys, the soil is mapped according to the surveyor’s preconceived 142

notions[27]. Classical mapping’s conceptual framework was established using quantitative 143

and statistical methods. The method of developing and updating spatial soil information 144

systems via analytical and experimental observational methods paired with spatial and non- 145

spatial soil inference systems is generally known as digital soil mapping [28]. Digital soil 146

mapping is also known as computer-assisted soil cartography, numerical soil cartography, 147

pedometric mapping, environmental correlation, predictive soil mapping, or geographical 148

extrapolation utilizing models [25,29–32], The digital soil map depicted in Figure 3 presents 149

an illustration of the soil nutrient distribution in a specific area located in Ogun State, 150

situated in the South-West region of Nigeria. 151

In prior studies, a digital soil map was considered a digitized conventional soil map 152

in the form of polygons [33]. However, because the map was not created using statistical 153

inference, it cannot be construed as a digital soil map, but rather a digitized soil map. 154

The initial development of the SCORPAN framework for use in digital soil mapping was 155

accomplished by [34]. SCORPAN is a mnemonic for an empirical quantitative descriptions 156

of relationships between soil and environmental factors with a view to using these as soil 157

spatial prediction functions for the purpose of Digital soil mapping where: 158

S = soil classes or attributes 159

f = function 160

s = soil, other or previously measured properties of the soil at a point 161
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Figure 2. The Evolution of Soil mapping

c = climate, climatic properties of the environment at a point 162

o = organisms, including land cover and natural vegetation or fauna or human activity 163

r = relief, topography, landscape attributes 164

p = parent material, lithology 165

a = age, the time factor 166

n = spatial or geographic position. 167

168

Spatial soil prediction functions with an auto-correlated error are often used to forecast 169

soil class or soil attributes from so-called SCORPAN factors [34]. 170

Sc = f (s, c, o, r, p, a, n) + e, or Sa = f (s, c, o, r, p, a, n) + e 171

’e’ stands for spatially correlated residuals, where Sc and Sa are soil classes and 172

soil properties as a function of soil, climate, organisms, relief, parent material, age, and 173

geographical position [35]. For the quantitative prediction of soil groups or dynamic 174

soil properties based on empirical observations, the SCORPAN model is employed.The 175

majority of effort in digital soil mapping is based on developing a mathematical model 176

that connects field soil data and SCORPAN variables[36,37]. Afterwards, the model is used 177

with extensive spatial environmental data. To extrapolate, update, or disaggregate soil 178

maps, digital soil mapping can also employ conventional soil maps as input [38,39]. The 179

underlying principle is to employ machine learning (ML) techniques to find the knowledge 180

inherent in completed surveys or to reverse engineer the surveyor’s soil-landscape mental 181

model [40]. 182

2.3. Research Justification 183

The ability of ML-based methods to accurately forecast soil characteristics, crop growth, 184

and soil fertility has attracted a lot of attention in recent years. Texture, organic matter, pH, 185

nutrient content, soil moisture, and soil structure are just a few of the many soil variables 186

that may be analyzed with the ML approach. ML techniques are superior to traditional 187

statistical methods because of their capacity to process massive amounts of complex data 188

and reveal hidden patterns. Several studies have focused on developing ways for applying 189

machine learning to predict soil parameters [41–43], crop growth [44–46], and soil fertility 190

[47,48]. 191

Recently, a systematic literature review that highlights the research gaps in certain ap- 192

plications of deep learning techniques and evaluates the influence of vegetation indicators 193

and environmental factors on agricultural productivity was published in [49].The authors 194

examined prior studies from 2012 to 2022 from various databases. The article focuses on 195

the benefits of employing deep learning in agricultural yield prediction, the best remote 196

sensing technology depending on data collection requirements, and the numerous factors 197

that influence crop yield prediction. In general, several studies have demonstrated the 198
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Figure 3. Digital soil map depicting the soil’s nutrients for a location in Southwest Nigeria.

efficacy of machine learning algorithms in predicting soil properties, soil fertility, and crop 199

yields. It’s vital to keep in mind, though, that ML models’ accuracy is extremely sensitive 200

to the quantity and quality of data used in training, in addition to the algorithms and pa- 201

rameters with which they are implemented. Further research is needed to investigate how 202

to construct and refine ML models for predicting soil parameters and evaluate how well 203

they function in different environmental and soil circumstances. Farmers, policymakers, 204

plant breeders, and other professionals in the agricultural sector can all benefit from ML 205

recommendations. 206

3. Materials and Methods 207

3.1. Database Search Strategy and Eligibility Criteria 208

In this research, we developed a search strategy and utilized it to scour a variety of 209

databases in search of up-to-date, relevant research publications on the research study 210

of using machine learning models to create digital maps of soil and predict its physical 211

qualities. Google Scholar [50] and the ACM Digital Library [51] were the primary resources 212

used in the search. Timeframe for the investigation: 2002–2022. These sources were selected 213

because of their extensive indexing of research into the use of machine learning models in 214

DSM and SPP. These can be found with little effort and are easily accessible. 215

3.2. Review Strategy 216

The review technique covers research design, search strategy, information sources, 217

study selection, and the method of data collection. Publications that met the predefined 218

inclusion and exclusion criteria were evaluated. Manuscripts that were comments, letters, or 219

editorials were excluded. The search strategy is composed as follows: (a) Construct search 220

terms by identifying major keywords, required action, and expected results; (b) Determine 221

the synonyms or alternative words for the major keywords; (c) Establish exclusion criteria 222

to make exclusions in the course of search; and (d) Apply Boolean operators to construct 223

the required search term. 224

Results for (a): DSM, SPP, ML, Deep Learning, soil properties, soil nutrients, soil map, soil 225

datasets and crop growth 226

Results of (b): Smart soil, soil information system and soil fertility 227

Results for (c): Smart farming, plant disease, crop disease, articles in different languages 228

other than English. 229

Result (d): a, b, c combined using AND OR 230
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In this study, publications were chosen from the peer-reviewed literature by doing a 231

search using the generated search phrase on Science Direct, Scopus, Google Scholar, and 232

MDPI. Conference proceedings, journals, book chapters, and whole books are all examples 233

of vetted resources. The initial number of results returned by Google Scholar was 1328; of 234

those, 480 fulfilled the initial selection criterion and 68 fulfilled the final requirements.The 235

studies were appropriately grouped. Figure 4 shows the Preferred Reporting Items for 236

Systematic Reviews and Meta-Analyses (PRISMA) flowchart for study selection. 237

Figure 4. PRISMA Model

3.3. Characteristics of Studies 238

The literature search yielded a total of 1328 articles, of which 1308 were retained after 239

duplicates were deleted, 1240 were disregarded as irrelevant based on their article titles 240

and abstracts, and 88 were selected for a detailed review. After a thorough full-text review, 241

we settled on including 68 articles from 1999–2022. Only 20 of the 68 articles (as indicated 242

in Table 2) included information on the data type and accuracy achieved. 243

3.4. Quality Assessment 244

The vast majority of studies failed to satisfy standards in at least one of the six quality 245

criteria examined. Limited sample size, an inadequate statistical analytical strategy, failure 246

to evaluate for confounders, and failure to disclose results for computational techniques 247

were the most frequently observed lack of quality throughout the investigations. 248

3.5. Data Sources and Search Strategy 249

We searched Google Scholar for studies published before October 2022. We considered 250

top 1328 papers which reported on the application of machine learning for soil properties or 251

soil fertility prediction. Keywords from Subject Headings or titles or abstracts of the studies 252

were searched for with the help of Boolean operators (and, or) with language restricted to 253

English. In addition, we reviewed the reference lists of primary studies and review articles. 254
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3.6. Inclusion and Exclusion Criteria 255

All research in which machine learning approaches were applied to predict soil quali- 256

ties was reported. The included publications must include the AI technique used or the 257

soil characteristics problem addressed in the article. Articles dealing with DSM’s three 258

key datasets and techniques were also included in the study selection. Articles on crop 259

diseases or plant disease prediction, statistical analyses, studies on palm kernel agriculture, 260

and irrigation systems for crop growth monitoring were all excluded. Editorials, narrative 261

review articles, case studies, conference abstracts, and duplicate publications were all 262

discarded from the analysis. 263

3.7. Data Extraction and Quality Assessments 264

The full texts of the citations chosen for review were acquired, and the reviewers 265

independently collected all study data, resolving disagreements by consensus. The initial 266

author, year of publication, study setting, ML approach, the data type used or recom- 267

mended, performance measures used, and accuracy attained were all extracted for every 268

study. 269

4. The impact of soil nutrients and fertility on crop growth 270

Nutrients from photosynthesis and soil are two of the most important for any plant’s 271

development. This suggests that it may be impossible for any crop to achieve sufficient 272

yields without adequate fertilizer input. Soil nutrients are one of the most crucial types 273

of food for plants. Crops like corn, cassava, and yam rely heavily on the nutrients in 274

the soil in order to thrive. Three of the most common nutrients in the soil are nitrogen 275

(N), phosphorus (P), and potassium (K). The soil also contains a wide variety of other 276

nutrients, such as calcium, magnesium, sulfur, zinc, boron, copper, iron, manganese, and 277

molybdenum. An available nutrient index is a useful tool for describing soil fertility. Soil 278

fertility is not guaranteed simply by the presence of all these nutrients. Fertile soil is one 279

that contains an abundance of the specific nutrients required by a given crop. The term 280

"soil fertility" refers to the soil’s inherent capacity to support plant development. For soil 281

to be considered sustainable, it must meet certain conditions, including but not limited 282

to the following: a suitable soil pH; the presence of suitable microorganisms; adequate 283

internal drainage; and the capacity of the topsoil to contain soil organic materials such 284

as algae, sewage sludge, manure, and many more [52,53]. For this reason, healthy, fertile 285

soil is essential for maximizing harvest production. Soil nutrients and quality have been 286

proven to have a significant impact on the yields of corn, cassava, and yam [54–59]. 287

4.1. Research on Soil nutrients and crop yield in Developing countries 288

Authors[60] analyzed the nutrient composition and corresponding crop yield in soil 289

that had been treated with organic manures. The study followed an experimental design, 290

as chosen by the authors. An experiment was being conducted by sowing four (4) maize 291

seeds into various earthen containers. To improve the soil’s quality, organic manure was 292

spread over it. Poultry manure, composted animal manure, and press mud are the manures 293

used. After six days, the plants were thinned so that each pot would hold two plants. The 294

study discovered that after applying organic manure, soil organic matter, phosphorus, and 295

potassium bioavailability all increased. Both the stature of the maize plants and the total 296

leaf area were boosted by the application of organic manures. These findings demonstrated 297

that soil nutrients can stimulate more robust growth in maize. In Kenya; [58] examined 298

how maize fared in terms of growth and yield on a specific category of soil. A randomized, 299

completely block nutrition omission trial was used to determine how maize responded to 300

nutrient administration. Ferralsols was the soil type employed. The treatments consisted of 301

applying one of six different inorganic fertilizers: NK, NP, PK, NPK, or NPK + CaMgZnBS. 302

The corn harvest was severely diminished by the use of PK fertilizer. The application 303

of urea resulted in the maximum yield (1800 kg/ha). The author concludes that using 304

fertilizers rich in nitrogen, phosphorus, and potassium will increase crop yields in maize. 305
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In a Northern Zambia study, authors [52] studied the connection between farming 306

methods and soil nutrient levels. Soils in the area are often either orthic arcrisols or feric 307

dirt. The majority of the population in this area is engaged in agriculture, and cassava 308

is their primary crop. Around 40 farmers and 120 fields were chosen from across 10 309

villages. Fieldwork on the cassava was done in the fourth quarter of 2018, thus the plants 310

were between one and three years old. The study found that the potassium content of 311

cassava decreased from the first to the second growing season. Cassava was shown to have 312

nutritional imbalances, which were blamed on its moderate quantities of exchangeable 313

magnesium. The regression analysis also revealed that soil organic carbon and leaf area 314

index were significant predictors of cassava yield. 315

Research along these paths was also carried out in Southwestern Nigeria. [61] em- 316

ployed a survey research design to investigate the topic of soil fertility in cassava farms. 317

Soil samples were also collected from each of the 33 farmers’ fields in Iwo and Osogbo. The 318

chemical and physical properties of the soil sample were analyzed in a laboratory. The 319

research concluded that the soil in roughly 80% of the fields is deficient in organic matter. It 320

was also discovered that the pH of the soil is generally acidic, with readings ranging from 321

5.4% to 6.4%. Phosphorous and nitrogen levels in the soil were also found to be below the 322

minimum required for cassava cultivation. Soil contains sufficient amounts of essential 323

nutrients like calcium, potassium, and magnesium. These results suggest that the potential 324

cassava harvest in Osun State is comparable to the national average. 325

In Ethiopia, [57] analyzed the nutritional levels in the soil of southern smallholder 326

cassava crops. The study’s focus is on the town of Wolaita in southern Ethiopia. There were 327

12 cassava farms in Wolaita, from which data was compiled. Soil samples and information 328

about how local farmers handle their soil are the types of information being collected. The 329

results were interpreted by looking at the physical and chemical characteristics of the soil. 330

Results from the study were mixed in quality. In the soil that was tested, there was an 331

adequate supply of manganese. Soil acidity might be high to mild, and in 83% of farms, 332

the amount of exchangeable calcium (Ca) was below the minimum acceptable level of 5 333

Cmol (+) kg-1. Boron and copper were both absent from the cassava fields, and iron and 334

zinc levels were low. 335

[62] examined the impact of applying inorganic fertilizer and biochar on yam yields 336

in a Ghanaian agroecological zone. The research is a randomized block-design factorial 337

experiment. Three inorganic fertilizers and four biochars made from wood shavings were 338

applied. The research showed that there was no discernible change in soil characteristics 339

in response to the experimental treatment. The amount of nitrogen in the atmosphere 340

decreased. Six months after planting, applying biochar considerably enhanced the number 341

of seed yams per acre, whereas applying fertilizer increased productivity. This means that 342

yam cultivation can benefit from biochar even at high concentrations. [63] was primarily 343

interested in how soil fertility affected the variations in yam species’ growth. The two most 344

common species are D. alata and D. rotundata. The D. alata species was reported to have 345

better growth statistics than the D. rorundata species. The two yam species were found to 346

produce more at the forest location than in the savanna area, which was due to the higher 347

soil fertility there. The deficient nitrogen and potassium nutrients at the savanna location 348

were also responsible for a significant fall in the Leaf Area Index. 349

4.2. DSM/ML soil prediction in developing countries: challenges 350

In underdeveloped nations, the application of digital soil maps and machine learning 351

for soil prediction is frequently hampered by a number of reasons, including: 352

Data scarcity: In many underdeveloped nations, soil data is scarce or nonexistent, making 353

accurate digital soil maps and training machine learning models problematic. This occurs 354

frequently owing to a scarcity of resources and funds for soil surveys and studies. 355

Low technical expertise: Poor countries may lack professionals with the technical abilities 356

needed to produce and evaluate digital soil maps as well developing machine learning 357

models. This can make it challenging to effectively implement these technologies. 358
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Restricted access to technology: Many underdeveloped countries may lack the requisite 359

infrastructure or resources to facilitate the usage of digital soil maps and machine learning. 360

This can involve a lack of internet connectivity, computer equipment, and access to software 361

and data. 362

Inadequate governmental capacity: Poor countries may lack the institutional ability neces- 363

sary to properly employ digital soil mapping and machine learning technology. These can 364

include ineffective governance systems, insufficient financing for research and develop- 365

ment, and a lack of coordination among various government agencies and stakeholders. 366

5. Soil Information System 367

The four main components of soil are minerals, water, air, and soil organic matter 368

(SOM). The ratio and content of these components have a significant impact on the physical 369

properties of soil, including its texture, structure, and porosity (the percentage of pore 370

space). The capacity of the soil to transmit air and water is thus influenced by these features. 371

It is possible to assess the soil’s quality using a small collection of data on its properties, 372

such as texture, organic matter, pH, bulk density, and rooting depth. To comprehend soil 373

quality, soil organic matter is very crucial because it can have an impact on a variety of soil 374

properties, including other components of the limited data set [64]. Soil information systems 375

provide aggregate measurements of soil quality, such as the soil’s functional capacity and 376

its performance in relation to a certain application. To "learn" or understand from data 377

how soil components are distributed throughout space and time, statistical models have 378

been employed in soil science research, and more specifically, pedometrics [65]. In order to 379

calibrate, validate, and compare models, [66] suggests using soil component datasets as 380

standard evaluation datasets, starting values, and system parameters. It’s a crucial piece of 381

the puzzle when trying to model the Earth’s system. 382

Given the huge need for quantitative geographic soil data and its current scarcity, 383

it is crucial to create and implement ways of providing this information. Every soil in- 384

formation system needs to be flexible enough to accommodate user needs and requests 385

while also managing datasets that change in space and time [67]. The tremendous growth 386

of computing and digital technology has led to the emergence of enormous quantities of 387

data and tools in every domain. As a result, numerous initiatives have been launched to 388

create data infrastructures for spatial soil information systems [68]. For more efficient land 389

deterioration prevention and control, regional development feasibility studies, disaster risk 390

prediction (such as floods and landslides), environmental quality restoration, and formative 391

strategic planning, accurate and up-to-date information on the environment, extent, spatial 392

distribution, opportunities, and constraints of soil properties is required [69]. 393

Over time, many methods have been developed for collecting soil data. The backbone 394

of most soil information systems consists of databases containing pedotransfer functions, 395

soil profiles and analytical data, and a collection of methodologies. Soil data providers, both 396

public and private, can take advantage of the available technical solutions and apps for 397

data management [70]. It is reported in [71]. how a new national soil information system 398

for New Zealand was developed and implemented using a hybrid approach of analogue 399

and digital soil mapping methods. This hybrid approach integrates both traditional soil 400

survey processes and data with modern digital soil mapping techniques and information 401

in order to (eventually) achieve total coverage of New Zealand at a 1:50,000 scale. soil data 402

collection, archiving, and verification by photograph and database. 403

Several audiences receive customized dynamic fact sheets, maps, and spatial data. The 404

system can conduct pedotransfer functions (PTFs) and other digital soil mapping activities, 405

manage and simulate soil uncertainty, and produce relevant metadata reports. Soil pH, 406

calcium (Ca), and phosphorus levels were predicted using an artificial neural network 407

(ANN) and random forest (RF) machine learning techniques [72]. Farmers can use the Ca, 408

P, and pH readings from a soil sample to determine how much fertilizer to add to the soil. 409

Soil particle-size fractions (PSF) were predicted in Nigeria at six traditional soil depths 410
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using GlobalSoilMap criteria. (0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm). RF provides 411

reliable predictions of the particle-size fraction composition of Nigeria’s soil [73]. 412

Using ESRI software and both main and secondary soil maps based on the geographi- 413

cal subdivision of mapping units found in the dataset source, [74] created a soil information 414

system. Modern soil characteristics are displayed by this system. 250,000 plots were used 415

for sampling, and 100,000 soil mapping units (SMUs) were analyzed. Soil characterization 416

units have advanced relational databases and physical and chemical soil categories that 417

facilitate digital descriptions of soil profiles. Soil organic carbon (g kg1), soil pH, sand, silt, 418

and clay fractions (%), bulk density (kg m3), cation-exchange capacity (cmol+/kg), coarse 419

fragments (%), soil organic carbon stock (t ha1), and depth to bedrock are just a few of the 420

local soil properties that [75] takes into account using tree-based models (random forest 421

and gradient tree boosting) at a 250-meter resolution in a 3D soil information system (cm). 422

In order to better assist farmers in managing their crops, [76] introduced a new IoT and 423

machine learning-based soil information system that would provide them with real-time 424

temperature and soil moisture data for environmental monitoring. Modern technologies 425

allow farmers to instantly report crop, soil variety, and N-P-K levels. The technology is 426

designed to be used by farmers in any location while allowing end users to control their 427

connected farms from afar. There is a rise in climate change adaptation and mitigation 428

efforts. 429

[77] built a method for managing soil that makes informed crop suggestions using 430

classifier models. An intuitive web-based content management system is part of the 431

created soil information system, which can be used to make planting predictions. The 432

system is extensible because it can be tested on a wide variety of crops and because it 433

presents the possibility of employing information mining techniques to estimate crop yields 434

based on input parameters for environmental circumstances. However, the soil databases 435

(information systems) currently in use are not extensive or precise enough to incorporate 436

soil data into the global geographic data infrastructure [78]. This is mostly due to the 437

fact that, given their current capacity, they can only store information from sporadic and 438

occasionally available conventional soil surveys. Due to the slow and expensive nature of 439

conventional soil survey methods, there aren’t many spatial data sets available for soil. The 440

future of conventional soil surveying is also causing some individuals considerable concern 441

due to a general problem in the collection of new field data. [78] expect technological 442

innovations like handheld field spectrometers to come to the rescue. To effectively deal 443

with this problem, it was proposed that existing soil information systems be expanded to 444

allow for the generation of new soil maps in addition to the storage and use of digitized 445

(pre-existing) soil maps. One definition of digital soil mapping is the process of creating 446

and populating spatial soil information systems via field and laboratory observational 447

methods in combination with non-spatial and spatial inference systems. 448

6. Artificial Intelligence Models for Soil Properties Prediction 449

A quick perusal of related work on artificial intelligence (AI) models and digital 450

soil mapping (DSM), as summarized in Table 2, reveals that AI models are the norm 451

for predicting soil attributes and digital soil mapping. [79] offered a computerized soil 452

mapping method for preventing gully erosion by advising landowners on preventative 453

steps. Using R-Squared, KC, and RMSE as accuracy metrics, a multiple nonlinear regression 454

model was built with 68% precision. Nonetheless, the low accuracy is understandable 455

given that the soil depth map is not a fair depiction of the sample in reality, making it 456

difficult to conduct research. The use of machine learning algorithms for estimating soil 457

depth has been explored further in [80]. QRF models were utilized, and with RMSE as the 458

measure of evaluation, they were able to reach an accuracy of 30%. It can be inferred from 459

the accuracy percentage that soil depth in digital soil mapping is still a discoverable topic. 460

An evaluation of soil fertility using DSM and machine learning techniques was proposed 461

in [81]. Using the Quality Reference Framework (QRF), great accuracy was attained by 462

utilizing the evaluation metrics RMSE and MAE. However, the model’s precision was 463
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constrained for some soil characteristics, such as nitrogen (N) and potassium (K). Soil maps 464

for a variety of soil qualities, of which QRF was able to provide the best accuracy, are 465

another issue that was addressed. 466

Self-organizing maps (SOMs) were also employed as a machine learning model [82]. 467

Supervised maps are used to forecast soil moisture using SOM and Random Forest (RF) 468

models; when tested on a dataset including both soil moisture and land cover, SOM showed 469

greater model accuracy than RF when evaluated with respect to R2 and KC. Multi-sensor 470

data and ML algorithms, including RF, XGBoost, and SVM (supervised vector machine), 471

were also used to make predictions about soil moisture, with an accuracy of 87.5% [83].Many 472

deep learning methods, such as deep neural networks (DNN) and artificial neural networks 473

(ANN), have been used to predict soil attributes in space. With an AUC of 89.8 %, DNN 474

achieved the highest accuracy. Due to the lack of high-quality artificial intelligence solutions 475

for digital soil mapping, researchers from all over the world are paying close attention to 476

the field. 477

In addition, a synopsis of the prior research conducted on intelligent soil prediction 478

between 2016 and 2022 is provided in Table 3, along with information regarding the source, 479

solution provided, and dataset type. Finally, some of the existing online and mobile 480

applications pertaining to soil are described in Table 4, along with the documented source, 481

application name, function, and date. 482
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Table 2. Existing Work on AI Models and DSM.

Reference Problem
Addressed AI Methods Metric Accuracy Dataset Types Limitations

[79]

DSM to inform
gully erosion

mitigation
measures

MNLR, CM KC, R2, RMSE 68%
Covariate and
climate data,

land type maps.

Soil depth map
not a good

representation
of reality

(covariate layer
map required)

[81]

Assessment of
the soil fertility

status using
DSM and ML

QRF, CM R2, CCC,
RMSE, MAE

high and
average
accuracy

Soil Dataset
(SOC, OM,
Kech„ Pass,

CEC, SumBas,
BS)

Model accuracy
was limited for
some of the soil
properties, such
as N and Kech.

[84,85]

Improved
machine

learning models
accuracy in

DSM

CM, RM,
ANFIS, EGB,
ERT, ANN,

SVR, MARS,
KNN, GP

RMSE, MAE,
R2, CCC,
F-score

High accuracy

Clay, sand,
CaCO3, SOC,

SEC, pH, K, Ca
+ Mg, Na, SAR,

,EF, MWD.

Uncertainty
was observed in

the predicted
values, Small
dataset used.

[80]
Prediction of

soil depth using
DSM

QRF, RK RMSE, R2, CCC 30% Covariates data
set

Lower accuracy
rate achieved

due to the error
in locating old

coordinates

[86].

Soil maps for a
wide range of
soil properties

using ML

RF, QRF, CM,
SVM Bias,R2 RMSE

Best accuracy
achieved with

QRF

Gravel, clay,
sand, density,
pH,SOC and
soil depths(0-
200cm). 0–5,
5–15, 15–30,

30–60, 60–100
and 100–200

cm.

Overestimation
was observed

for some
probability

values.

[87]

Review on
DSM

algorithms and
covariates for
SOC mapping

RK, MLR, RF,
CM, NN, BRT,

SVM, GWR
-

RF performed
better than

others

Environmental
covariates,

parent material,
climate factor,

organic activity,
topography.

Performance
metrics or
evaluation

methods not
reported.

[88]

Spatial
prediction of
soil aggregate

using ML
algorithms and
environmental

variables

RF, SVM, kNN,
and ANN and

ensemble
modelling

RMSE, MAE,
R2, and

normalized
RMSE

Ensemble
achieved high

accuracy for all
soil targets

Soil properties,
remote sensing
data, legacy soil

maps, and
DEM

derivatives

lower accuracy
achieved for

SOC categories.

Abbreviations: DSM - Digital Soil Mapping, ML - Machine Learning, DL - Deep Learning, MNLR- Multi-nominal
logistic regression, CM- Cubist Model, QRF- Quantile regression forest, KC- Kappa coefficient, RMSE - Root
mean square error, MAE - mean absolute error (MAE), R2 - coefficient of determination, CCC - Lin’s concordance
correlation coefficient BS -Base saturation, RF -Random Forest.
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Table 2 Continued: Existing Work on AI Models and DSM

Reference Problem
Addressed AI Methods Metric Accuracy Dataset Types Limitations

[89–91]

Prediction of
SOC and soil
total nitrogen

using DSM and
ML algorithms

RF, BRT, SVM
and Bagged

-CART

RMSE, MAE
and R2

BRT model
performed best

in predicting
SOC and STN

DEM
derivatives,

multi -temporal
Sentinel data,

environmental
data

Investigation
using other soil

properties is
required

[92]

Predicting and
Mapping of

SOC using ML
Algorithms

SVM, ANN, RF,
XGBoost, CM,

RT, DNN

RMSE, MAE,
R2 and CCC.

DNN mapped
SOC contents

more accurately

Terrain
attributes,

remote sensing
data, climatic

data,
categorical data

Further
investigation on

the dataset
using hybrid
algorithms is

required.

[83]

Soil moisture
prediction

using
multi-sensor
data and ML

algorithm

RFR, XGBoost,
SVM, CBR and
GA for feature

selection

RMSE and R2

XGBR-GA
hybrid model

yielded the
highest

performance
(R2 = 0. 891;

RMSE =
0.875%)

DEM
derivatives,

Sentinel -1 and
Sentinel -2 data.

Testing the
framework in

large-scale
areas with

various
land-use

characteristics
is required.

[82]

Supervised
Maps for

predicting Soil
Moisture

Unsupervised
SOM,

supervised
SOM, semi-
Supervised

SOM, and RF

R2, accuracy,
and Cohen’s

KC

Higher
accuracy

achieved with
the SOM
methods

Soil moisture
and land cover

dataset

RMSE and
MAE factors are
not considered

in the
performance
evaluation

[93]

Predictive
mapping using

semi-
supervised ML

Decision trees,
logistic

regression (LR),
SVMs and

graph-based
semi-

supervised ML
(GS-ML)

Mean accuracy
(%), Accuracy

range (%),
Accuracy
standard

deviation (%)

GS-ML
achieved higher

accuracy.

Environmental
covariate data

Improvement is
required for
parameter

setting, RMSE,
R2 and MAE

evaluations are
not considered

[94]

ML for
predicting soil

classes in
semi-arid

landscapes.

Multiple
classifications
and regression

ML

Kappa analysis,
Brier scores and
confusion index

- environmental
covariates

Model accuracy
was obtained

when there are
few soil classes,
limited dataset
to investigate

“rare” soil
classes.

Abbreviations: SOC- Soil organic carbon, OM - Organic materials, Kech - exchangeable K, ANFIS - Adaptive-
network-based fuzzy inference system, EGB - Extreme gradient boosting, ERT - Extremely randomized trees,
ANN - Artificial neural network, SVR - Support vector regression, SFP - Soil formation patterns, DEM -digital
elevation models, BRT - Boosted Regression Tree, GWR - Geographically Weighted Regression.
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Table 2 Continued: Existing Work on AI Models and DSM

Reference Problem
Addressed AI Methods Metric Accuracy Dataset Types Limitations

[95]

Mapping of Soil
Water Erosion

using ML
Models

weighted
subspace

random forest ,
Gaussian

process and
naive Bayes

(NB) ML
methods

Accuracy,
Kappa index

and probability
of detection

-
Soil texture,

land and
climate dataset

The data
collection and
sampling of

them were not
on the same
scale. Also,

RMSE, R2 and
MAE factors are
not considered

in the
performance
evaluation.

[96]

Digital
mapping of soil
carbon fractions

using ML

RF, SVM, CaRT,
BaRT, BoRT, RK,

OK

Mean, standard
deviations,

prediction error,
and R2

RF achieved the
best accuracy

soil data (0–20
cm), carbon

Further
investigation

required on the
use of more

sophisticated
predictors

[97] Multi-scale
DSM with DL DL-ANN, RF R2 DL achieved

4–7 % than RF

Silt, clay, ZC,
SFP, DEM
resolution.

The model is
not tested with

some
environmental

data such as
climate,

lithology, or
land cover.

[98]

Semi-
supervised

DNN
regression for

spatial soil
properties
prediction.

DNN, GA, SVR
and regression

methods

RMSE, MAE,
R2, Bias, ratio

of performance
to inter-quartile

distance

DNN achieved
the highest
accuracy

Hyperspectral
remote sensing

image data

Sensitive to the
quality of the
initial training
data set and
model not

tested with a
large number of

samples.

[99]

Assessment of
Landslide

Susceptibility
using DL with

Semi-
Supervised
Learning

DNN, SVM and
LR.

Accuracy,
Kappa index,

predictive rate
curves (AUC),

and
information

gain ratio (IGR)

DNN achieved
higher accuracy

with AUC of
0.898.

land cover and
soil data

The K-means
algorithm was

tested using
fixed value and

limitation by
the accuracy of

layers and
sampling
process

observed.

Abbreviations:MARS - multivariate adaptive regression splines, KNN - k-nearest neighbour, GP - Genetic pro-
gramming, SAR- Sodium adsorption ratio, SFP - EF - Erodible fraction of the Soil, MWD - Mean weight diameter,
SEC -Soil electrical Conductivity, RK - regression kriging model, ZC- zinc concentration, Pass - assimilable P, CEC
- cation exchange capacity, SumBas - sum of bases, PLSR - Partial Least Square Regression, OK - Ordinary Kriging,
CART - classification and regression trees, CBR - CatBoost gradient boosting regression, GA - Genetic Algorithm,
SOM -self-organizing maps.
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Table 3. Previous Work on Smart Soil Prediction (2016 -2022)

Source Solution Soil Dataset

[100]
Prediction of clay soil expansion using

ML models and meta-heuristic
dichotomous ensemble classifier

Soil swelling and Soil properties data.

[101] Predicting crop yield on a particular soil
using IoT Nutritional value of soil data.

[102] ML approach to simulate Soil CO2 fluxes
under cropping systems soil classification and temperature data.

[103] Predicting Africa soil properties Using
ML Techniques

Soil sample measures, soil depth (topsoil
or subsoil) and Climate data.

[104] Soil analysis of micro-nutrients using ML
and IoT Soil micro-nutrient and soil pH Data.

[105] Estimation of the moisture of vineyard
soils from digital photography using ML. Soil sample and Photographic data.

[106] Prediction of soil shear strength
parameters using ML Algorithms

Soil properties and cone penetration test
data.

[107] Analysis of ML methods for Agricultural
soil health management Secondary data

[108] Crops yield prediction based on mL
models in West African countries

Climate, yields, pesticides and Chemical
Data.

Abbreviations:IoT - Internet of Things, ML - Machine learning

6.1. Existing Mobile Applications for Smart Soil 483

Table 4. Existing Soil Web/Mobile App

Source Application
Name

Year Functions

[109] SQAPP 2015 Sustainability of SM and high
productivity

[110] SoilWeb 1999 Instantaneous Soil Information
[111] AgriApp 2014 Crop Advisory, Soil Testing and

Drone Services
[112] LandPKS 2020 Soil health monitoring and Land

management
[113] Crop

App
Index

2017 Agricultural decision support
tool

[114] MySoil
Test Kit

Not
Speci-
fied

Information to improve soil and
plant health

[115] SIFSS 2017 Provides indication scores for
soil types.

[116] Soil Test
Pro

2019 Soil nutrient management sys-
tem

[117] SoilScapes Not
Speci-
fied

Digital smart Information Sys-
tem

[118] SoilInfo
App

2017 Generate open soil data

[119] SoilCares 2021 Smart application for monitoring
soil nutrients and soil fertility
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6.2. Data Quality and ML Model Considerations 484

The efficacy of smart soil systems in predicting accurate outcomes is contingent upon 485

several factors, with the foremost being the quality of the data employed and the identi- 486

fication of a machine-learning model that yields the optimal result. There exist various 487

measures that can be implemented to enhance the accuracy of models employed for pre- 488

dicting soil nutrient levels and to improve the quality of data. A few notions are discussed 489

below: 490

491

a) Data gathering and preprocessing: This entails making sure that the soil types, 492

geographic areas, and environmental conditions represented in the model training data 493

are accurate. In order to understand soil nutrients, data must also be gathered through soil 494

samples, lab testing, remote sensing, and historical records. The final step is data cleaning, 495

which includes handling missing numbers, fixing errors, and removing outliers [120] 496

497

b) Feature engineering: In order to enhance the accuracy of soil nutrient level estima- 498

tion, it is imperative to identify and extract relevant features from the collected data. The 499

influence of environmental factors, including climate, rainfall, and cultivation of land, as 500

well as the chemical, biological, and physical characteristics of soil, is potentially significant 501

[121]. 502

503

c) Integrate domain knowledge: In order to gain further insight into the determinants 504

that impact the levels of nutrients present in the soil, it is recommended to consult with 505

experts in the domain [122], including agricultural scientists or researchers specializing 506

in soil science. Applying this data when constructing the models and determining which 507

attributes to incorporate is essential. 508

509

d) Innovative modelling methods: Conducting research on state-of-the-art machine 510

learning techniques,[123] and advanced deep learning architectures is of great significance 511

[124]. Furthermore, it is imperative to consider ensemble methodologies that employ an 512

assemblage of models to enhance the accuracy of predictions. 513

514

e) Model testing and verification It is imperative to assess the model capacity to ex- 515

trapolate to new data sets through the application of rigorous evaluation methodologies. 516

Furthermore, assessment criteria are examined and monitored to measure the precision of 517

the models [125]. 518

6.3. Considerations for Choice of ML Technique for Soil Nutrients Properties Prediction 519

The choice of ML technique to employ for soil nutrients properties prediction and 520

growth response analysis [126], as in any other class of problem, depends on several fac- 521

tors including the nature of the problem under consideration, the available data, and the 522

desired outcome [127,128]. Different machine learning algorithms are designed to address 523

specific types of problems, be it a classification, regression, clustering or recommendation 524

problem [129,130]. The size and quality of available data must also be considered because 525

some algorithms require large amounts of data to generalize well, while others can work 526

effectively with smaller datasets, thereby avoiding fitting problems [131]. Depending on 527

the algorithm, certain types of features may be more suitable, thereby necessitating the 528

need for feature selection and extraction [132].This is to enhance the predictive power of 529

the features of the dataset. 530

The interpretability and explainability of a given model [133], when required, may 531

impact the choice of the model over classical models. Some algorithms, like decision trees 532

or linear regression, provide easily interpretable models, while others, such as neural 533

networks, may be more complex and harder to interpret. The statistical properties of the 534

available dataset also largely determines the choice of ML technique to use in a given 535

instance [134]. Considering the complexity of the relationship between the input vari- 536
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ables and the target variable, simple problems may be effectively solved by linear models, 537

while complex problems with non-linear relationships might require more sophisticated 538

algorithms like random forests or support vector machines. 539

Domain knowledge is a crucial element in the choice of ML technique used for pre- 540

dicting soil nutrients properties. Incorporating domain knowledge or expert insights into 541

the decision-making process in the preprocessing and model building is essential to the 542

reliability of the outcome of the prediction. Understanding the problem domain, a key 543

component of responsible AI [135], can help guide the selection of appropriate algorithms 544

and feature engineering techniques. Table 5 presents a quick summary of some popular 545

ML techniques with their associated relative strengths and weakness which should should 546

be considered when determining the technique to employ in predicitng soil nutrients. 547

Table 5: Summary of Some ML Techniques with their Strengths and Weaknesses

ML Technique Strengths Weaknesses
Support Vector
Machine[136,137]

Effective in high-dimensional
spaces, less prone to over-
fitting, versatile kernel func-
tions, effective with small to
medium datasets, insensitive
to irrelevant features

Performs poorly with large or
noisy data. Highly sensitive
to hyparameter tuning

k-Nearest
Neighbours[138,
139]

Simple, highly intuitive, non-
parametric, flexible decision
boundaries, considers the lo-
cal structure of the data, can
be effective with both lin-
ear and non-linear relation-
ships, handles outliers rela-
tively more efficiently

There is high computational
complexity during prediction
phase, distance metric selec-
tion may be ambiguous, sen-
sitive to the curse of dimen-
sionality, struggles with im-
balance data, has storage is-
sues during prediction

Decision Trees[140,
141]

Offers good explainability
and interpretability, cognais-
sant to feature importance,
handles non-linear rela-
tionships among features
relatively well, good for
mixed data (categorical +
non-categorical), has low
computational complexity,
handles outliers well

Prone to overfitting, highly
unstable especially to a slight
variation in the training set,
makes locally optimal de-
cisions without considering
the global optimal structure,
tends to favor features with
a large number of categories
or high cardinality, not well-
suited for problems where
classes are linearly separa-
ble, struggle to represent com-
plex relationships that require
global knowledge or long-
range dependencies in the
data
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Table 5 Continued: Summary of Some ML Techniques with their Strengths and Weaknesses

ML Technique Strengths Weaknesses
Linear Regression
[142,143]

Interpretable, simple, re-
source efficient, robust
feature importance identifica-
tion, often useful as a baseline
model for comparison with
more complex algorithms

Often assumes a linear rela-
tionship between the input
features and the target vari-
able, does not handle outliers
efficiently, relatively limited
predictive power, naive as-
sumption of homoscedastic-
ity, also sensitive to multi-
collinearity

Logistic Regression
[144–146]

Interpretability, efficiency,
probabilistic problems, less
prone to overfitting and
allows for internal feature
selection

Assumes linearity like the lin-
ear counterpart, handles lim-
ited complexity, cannot han-
dle outlier, limited for binary
classification, and can be aff-
tected by imbalance dataset

Artificial Neural
Network [147–149]

Ability to learn complex pat-
terns, flexible architecture, au-
tomatically learn relevant fea-
tures, supports parallel pro-
cessing and has high general-
ization power thereby reduc-
ing fitting problems

Requires large amount of
data, has high computational
complexity, they lack good in-
terpretability because of their
black-box nature, sensitive to
hyperparameter tuning

Naive Bayes [150] Efficient with large datasets,
scalable, robust to irrela-
vant features, effective with
limited training sets, inter-
pretable

Sensitive to skewness, does
not capture complex rela-
tionships between features,
highly sensitive to scaling
problems

Random Forest
[151]

Known for high accuracy,
handles outliers and noisy
data, handles high cardinal-
ity, good with variable impor-
tance, resistant to overfitting

Lacks explainability, com-
putationally expensive, re-
quires good hyperparameter
tunning for optimal perfor-
mance, biased towards major-
ity classes

Gradient Boosting
[152]

High predictive accuracy,
high flexibility in handling
mixed data types, provides
insights into feature im-
portance, handles outliers
internally, handles missing
data, can be parrallelized
efficiently

Computationally expensive,
has a potential problem of
overfitting, difficult to inter-
pret, relies heavuly on the or-
der (or sequence) of the train-
ing data

7. Findings and Discussion 548

Figure 5 is a chart depicting the issue that this review seeks to address (as outlined 549

in Table 2). According to the visual analysis, the majority of published works (67.3%) 550

dealt with issues of soil nutrient characteristics; 17.3% handled DSM; 11.1% addressed soil 551

erosion; and 5.5% dealt with soil fertility. Figure 6 also provides a visual representation 552

of the most popular model employed in the research covered in Table 2’s meta-analysis, 553

which shows that random forest (RF) is the most popular choice for prediction, followed by 554

support vector machine (SVM) and other ML algorithms as shown in Figure 6 555

.Our findings show that RF outperformed other ML models in terms of accuracy. 556

Random Forest is a popular machine-learning approach that can handle both regression 557

and classification challenges, which makes it an adaptable option for forecasting soil char- 558

acteristics, nutrients, and soil fertility. At the training phase, the algorithm generates a 559
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Figure 5. Graphical representation of the Problem Addressed

variety of decision trees and then combines their results to extrapolate. Random Forest 560

has a number of advantages that may have led to its excellent success in forecasting soil 561

characteristics, nutrients, and soil fertility: 562

a) Resiliency to distortion: When compared to other algorithms, RF is less susceptible to 563

noise and outliers, which might help it deliver precise forecasts even when working with 564

unclear or missing soil data. 565

b) Managing massive data: Because Rf can accommodate large datasets with many input 566

features, it is well suited for forecasting soil qualities with several factors impacting their 567

values, such as pH, moisture content, organic matter, and nutrient levels. 568

c) Features selection: RF automatically chooses the most significant features for making 569

predictions, which can aid in identifying the main soil qualities and nutrients that are most 570

important in determining soil fertility. 571

d) Overfitting minimization: Random Forest employs numerous decision trees and ag- 572

gregates their outputs, which can aid in the reduction of overfitting, a typical problem in 573

machine learning in which models perform well on training data but fail to generalize to 574

new data. 575

e) Random Forest’s ensembling feature, in which it integrates many decision trees, aids in 576

bias reduction and prediction accuracy by using the collective wisdom of multiple trees. 577

Overall, Random Forest’s superior performance in predicting soil characteristics, nutrients, 578

and soil fertility can be attributed to its capacity to deal with noise, big datasets, feature 579

selection, overfitting reduction, and ensembling, making it a useful tool for soil-related 580

prediction tasks. It should be noted, however, that the performance of any machine learning 581

method is dependent on the quality of the data used for training and testing, as well as 582

suitable parameter tweaking and model evaluation approaches. Furthermore, merging 583

deep learning algorithms with ML can yield an ideal answer. In a nutshell, additional 584

research on intelligent soil prediction and smart agriculture is imperative for broadening 585

the knowledge repository, improving prediction techniques, and addressing the challenges 586

confronting contemporary farming. Through the utilisation of these tools, it is possible to 587

enhance food security, optimise resource utilisation, alleviate the impact of environmental 588

degradation, enable precision farming techniques, and promote sustainable development 589

within the agricultural sector. 590
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Figure 6. Graphical representation of the Top ML models used

8. Conclusions 591

This study reviews machine learning methods for predicting soil properties, agricul- 592

tural yield, and soil fertility. This literature evaluation illuminated current research gaps 593

in a specific field of machine learning methodologies and provided useful data on soil 594

attribute prediction. Through this extensive literature study, we learn about the several 595

forms of machine learning used in this subject, the soil characteristics problem that has 596

been addressed, and crop yield prediction criteria. Each study focused on a distinct set of 597

soil qualities, geographical conditions, and other features. For soil prediction, RF and deep 598

learning outperform conventional machine learning methods. The RF machine learning 599

algorithm and deep learning approach can accurately predict soil conditions and inform us 600

if a crop can be grown there given the model’s inputs. From the literature evaluation, It 601

is observed that the task of predicting soil or agricultural yield through machine learning 602

poses significant challenges. Inaccurate data has the potential to decrease the precision of 603

forecasting. The process of generalising models is impeded by variations in regional factors, 604

climatic conditions, and farming practices. Additionally, the selection of significant features 605

from multiple influencing factors requires domain expertise and experimentation. In order 606

to employ technology in a responsible manner, it is imperative to address all of these 607

issues. The refinement of machine learning techniques for the purpose of predicting soil 608

characteristics and crop yield is facilitated by expert collaboration, model monitoring, and 609

modification. The application of machine learning techniques to soil information analysis 610

can lead to the optimisation of fertiliser usage, prediction of pest and disease outbreaks, and 611

recommendation of precise irrigation strategies. This can result in enhanced agricultural 612

productivity and efficient management of land resources. 613

The amalgamation of DSM and ML techniques for soil prediction poses certain chal- 614

lenges in less developed nations. The challenges encountered in the implementation of 615

machine learning and data science initiatives include language and cultural impediments, 616

insufficient financial resources, suboptimal internet connectivity, and restricted availability 617

of reliable and all-encompassing data. In order to address these challenges, it is crucial to 618

allocate resources towards data collection, network enhancements, computing infrastruc- 619

ture, and the promotion of education and training to cultivate local expertise. Partnerships 620

and collaborations with foreign organisations can be advantageous for both information 621
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sharing and personnel development. Furthermore, Increasing soil investigation, analytical 622

ability, facilities, and public participation would solve these issues. Digital soil mapping 623

and machine learning for soil prediction can improve soil management and agricultural 624

productivity in developing nations. 625
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21. Kovačević, M.; Bajat, B.; Gajić, B. Soil type classification and estimation of soil properties using 682

support vector machines. Geoderma 2010, 154, 340–347. 683

22. Baskar, S.; Arockiam, L.; Charles, S.; et al. Applying data mining techniques on soil fertility 684

prediction. International Journal of Computer Applications Technology and Research 2013, 2, 660–662. 685

23. Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M.; Doukas, I.J.D. Comparing 686

machine learning models and hybrid geostatistical methods using environmental and soil 687

covariates for soil pH prediction. ISPRS International Journal of Geo-Information 2020, 9, 276. 688

24. Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; 689

Xu, M. Improving the spatial prediction of soil organic carbon using environmental covariates 690

selection: A comparison of a group of environmental covariates. Catena 2022, 208, 105723. 691



Version May 23, 2023 submitted to Big Data Cogn. Comput. 24 of 29

25. Legros, J.P. Mapping of the Soil; Science Publishers, 2006. 692

26. Ryan, P.; McKenzie, N.; O’Connell, D.; Loughhead, A.; Leppert, P.; Jacquier, D.; Ashton, L. 693

Integrating forest soils information across scales: spatial prediction of soil properties under 694

Australian forests. Forest Ecology and Management 2000, 138, 139–157. https://doi.org/https: 695

//doi.org/10.1016/S0378-1127(00)00393-5. 696

27. Hudson, B.D. The Soil Survey as Paradigm-based Science. Soil Science Society of America Journal 697

1992, 56, 836–841. 698

28. Lagacherie, P.; McBratney, A. Chapter 1 Spatial Soil Information Systems and Spatial Soil 699

Inference Systems: Perspectives for Digital Soil Mapping. In Digital Soil Mapping; Lagacherie, 700

P.; McBratney, A.; Voltz, M., Eds.; Elsevier, 2006; Vol. 31, Developments in Soil Science, pp. 3–22. 701

https://doi.org/https://doi.org/10.1016/S0166-2481(06)31001-X. 702

29. Franklin, J. Predictive vegetation mapping: geographic modelling of biospatial patterns in 703

relation to environmental gradients. Progress in Physical Geography: Earth and Environment 1995, 704

19, 474–499. https://doi.org/10.1177/030913339501900403. 705

30. McKenzie, N.J.; Ryan, P.J. Spatial prediction of soil properties using environmental correlation. 706

Geoderma 1999, 89, 67–94. https://doi.org/https://doi.org/10.1016/S0016-7061(98)00137-2. 707

31. Scull, P.; Franklin, J.; Chadwick, O.; McArthur, D. Predictive soil mapping: A review. Progress 708

in Physical Geography 2003, 27, 171–197. https://doi.org/10.1191/0309133303pp366ra. 709

32. Kempen, B.; Heuvelink, G.B.M.; Brus, D.J.; Stoorvogel, J.J. Pedometric mapping of soil organic 710

matter using a soil map with quantified uncertainty. European Journal of Soil Science 2010, 711

61, 333–347. https://doi.org/https://doi.org/10.1111/j.1365-2389.2010.01232.x. 712

33. Tomlinson, R. Design considerations for digital soil map systems 1978. 713

34. McBratney, A.; Mendonça Santos, M.; Minasny, B. On digital soil mapping. Geoderma 2003, 714

117, 3–52. https://doi.org/https://doi.org/10.1016/S0016-7061(03)00223-4. 715

35. Florinsky, I. The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on 716

the 125th anniversary of its publication). Eurasian Soil Science 2012, 45, 445–451. https: 717

//doi.org/10.1134/S1064229312040047. 718

36. Bou Kheir, R.; Greve, M.H.; Bøcher, P.K.; Greve, M.B.; Larsen, R.; McCloy, K. Predictive 719

mapping of soil organic carbon in wet cultivated lands using classification-tree based models: 720

The case study of Denmark. Journal of Environmental Management 2010, 91, 1150–1160. https: 721

//doi.org/https://doi.org/10.1016/j.jenvman.2010.01.001. 722

37. Brungard, C.W.; Boettinger, J.L.; Duniway, M.C.; Wills, S.A.; Edwards, T.C. Machine learning 723

for predicting soil classes in three semi-arid landscapes. Geoderma 2015, 239-240, 68–83. https: 724

//doi.org/https://doi.org/10.1016/j.geoderma.2014.09.019. 725

38. Subburayalu, S.K.; Slater, B.K. Soil Series Mapping By Knowledge Discovery from an Ohio 726

County Soil Map. Soil Science Society of America Journal 2013, 77, 1254–1268. https://doi.org/ 727

https://doi.org/10.2136/sssaj2012.0321. 728

39. Odgers, N.P.; Sun, W.; McBratney, A.B.; Minasny, B.; Clifford, D. Disaggregating and harmon- 729

ising soil map units through resampled classification trees. Geoderma 2014, 214-215, 91–100. 730

https://doi.org/https://doi.org/10.1016/j.geoderma.2013.09.024. 731

40. Moran, C.J.; Bui, E.N. Spatial data mining for enhanced soil map modelling. International Journal 732

of Geographical Information Science 2002, 16, 533 – 549. 733

41. Martinelli, G.; Gasser, M.O. Machine learning models for predicting soil particle size fractions 734

from routine soil analyses in Quebec. Soil Science Society of America Journal 2022, 86, 1509–1522. 735

42. Payen, F.T.; Sykes, A.; Aitkenhead, M.; Alexander, P.; Moran, D.; MacLeod, M. Predicting 736

the abatement rates of soil organic carbon sequestration management in Western European 737

vineyards using random forest regression. Cleaner Environmental Systems 2021, 2, 100024. 738

43. Liu, D.; Liu, C.; Tang, Y.; Gong, C. A GA-BP neural network regression model for predicting 739

soil moisture in slope ecological protection. Sustainability 2022, 14, 1386. 740

44. Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of winter wheat yield 741

based on multi-source data and machine learning in China. Remote Sensing 2020, 12, 236. 742

45. Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. 743

In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium 744

(IGARSS). IEEE, 2015, pp. 858–861. 745

46. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield 746

prediction from UAV using multimodal data fusion and deep learning. Remote sensing of 747

environment 2020, 237, 111599. 748

https://doi.org/https://doi.org/10.1016/S0378-1127(00)00393-5
https://doi.org/https://doi.org/10.1016/S0378-1127(00)00393-5
https://doi.org/https://doi.org/10.1016/S0378-1127(00)00393-5
https://doi.org/https://doi.org/10.1016/S0166-2481(06)31001-X
https://doi.org/10.1177/030913339501900403
https://doi.org/https://doi.org/10.1016/S0016-7061(98)00137-2
https://doi.org/10.1191/0309133303pp366ra
https://doi.org/https://doi.org/10.1111/j.1365-2389.2010.01232.x
https://doi.org/https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1134/S1064229312040047
https://doi.org/10.1134/S1064229312040047
https://doi.org/10.1134/S1064229312040047
https://doi.org/https://doi.org/10.1016/j.jenvman.2010.01.001
https://doi.org/https://doi.org/10.1016/j.jenvman.2010.01.001
https://doi.org/https://doi.org/10.1016/j.jenvman.2010.01.001
https://doi.org/https://doi.org/10.1016/j.geoderma.2014.09.019
https://doi.org/https://doi.org/10.1016/j.geoderma.2014.09.019
https://doi.org/https://doi.org/10.1016/j.geoderma.2014.09.019
https://doi.org/https://doi.org/10.2136/sssaj2012.0321
https://doi.org/https://doi.org/10.2136/sssaj2012.0321
https://doi.org/https://doi.org/10.2136/sssaj2012.0321
https://doi.org/https://doi.org/10.1016/j.geoderma.2013.09.024


Version May 23, 2023 submitted to Big Data Cogn. Comput. 25 of 29

47. Keerthan Kumar, T.; Shubha, C.; .; Sushma, S. Random forest algorithm for soil fertility 749

prediction and grading using machine learning. Int J Innov Technol Explor Eng 2019, 9, 1301– 750

1304. 751

48. Benedet, L.; Acuña-Guzman, S.F.; Faria, W.M.; Silva, S.H.G.; Mancini, M.; dos Santos Teixeira, 752

A.F.; Pierangeli, L.M.P.; Júnior, F.W.A.; Gomide, L.R.; Júnior, A.L.P.; et al. Rapid soil fertility 753

prediction using X-ray fluorescence data and machine learning algorithms. Catena 2021, 754

197, 105003. 755

49. Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A systematic literature 756

review on crop yield prediction with deep learning and remote sensing. Remote Sensing 2022, 757

14, 1990. 758

50. Google. Google Scholar. https://scholar.google.com, accessed on 2022. Date accessed: 759

26-10-2022. 760

51. ACM. ACM Search. https://dl.acm.org/search/, accessed on 2022. Date accessed: 2-09-2022. 761

52. Kaluba, P.; Mwamba, S.; Moualeu-Ngangue, D.P.; Chiona, M.; Munyinda, K.; Winter, E.; Stutzel, 762

H.; Chishala, B.H. Cropping Practices and Effects on Soil Nutrient Adequacy Levels and 763

Cassava Yield of Smallholder Farmers in Northern Zambia. International Journal of Agronomy 764

2021, 2021. 765

53. Mwamba, S.; Kaluba, P.; Moualeu-Ngangue, D.; Winter, E.; Chiona, M.; Chishala, B.H.; Mun- 766

yinda, K.; Stutzel, H. Physiological and morphological responses of cassava genotypes to 767

fertilization regimes in chromi-haplic acrisols soils. Agronomy 2021, 11, 1757. 768

54. Agbede, T.; Adekiya, A.; Ogeh, J. Effects of Chromolaena and Tithonia mulches on soil 769

properties, leaf nutrient composition, growth and yam yield. West African Journal of Applied 770

Ecology 2013, 21, 15–30. 771

55. Sanchez, D.; Luna, L.; ESPITIA, A.; Cadena, J. Yield response of yam (Dioscorea rotundata Poir.) 772

to inoculation with Azotobacter and nitrogen chemical fertilization in the Caribbean region of 773

Colombia. RIA. Revista de investigaciones agropecuarias 2021, 47, 61–70. 774

56. Byju, G.; Suja, G. Mineral nutrition of cassava. Advances in Agronomy 2020, 159, 169–235. 775

57. Laekemariam, F. Soil nutrient status of smallholder cassava farms in southern Ethiopia. Journal 776

of Biology, Agriculture and Healthcare 2016, 6, 12–18. 777

58. Otieno, H.M. Growth and yield response of maize (Zea mays L.) to a wide range of nutrients on 778

ferralsols of western Kenya. World Scientific News 2019, 129, 96–106. 779

59. Endris, S.; Dawid, J. Yield response of maize to integrated soil fertility management on acidic 780

nitosol of Southwestern Ethiopia. Journal of Agronomy 2015, 14, 152–157. 781

60. Aziz, T.; Ullah, S.; Sattar, A.; Nasim, M.; Farooq, M.; Khan, M.M. Nutrient availability and maize 782

(Zea mays) growth in soil amended with organic manures. International Journal of Agriculture 783

and Biology 2010, 12, 621–624. 784

61. Salami, B.; Sangoyomi, T. Soil fertility status of cassava fields in South Western Nigeria. American 785

Journal of Experimental Agriculture 2013, 3, 152. 786

62. Akom, M.; Oti-Boateng, C.; Otoo, E.; Dawoe, E.; et al. Effect of biochar and inorganic fertilizer in 787

yam (Dioscorea rotundata Poir) production in a forest agroecological zone. Journal of Agricultural 788

Science (Toronto) 2015, 7, 211–222. 789

63. Mainoo, A.; BK, B. Yam plant growth and tuber yield response to ex-situ mulches of moringa 790

oleifera, chromolaena odorata and panicum maximum under three natural fallow aged systems. 791

Annals of Ecology and Environmental Science, 2, 7–14. 792

64. McCauley, A.; Jones, C.; Jacobsen, J. Basic soil properties. Soil and water management module 2005, 793

1, 1–12. 794

65. Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided 795

by machine learning tools. Soil 2020, 6, 35–52. 796

66. Dai, Y.; Shangguan, W.; Wei, N.; Xin, Q.; Yuan, H.; Zhang, S.; Liu, S.; Lu, X.; Wang, D.; Yan, F. A 797

review of the global soil property maps for Earth system models. Soil 2019, 5, 137–158. 798

67. Van Loenen, B.; Kok, B. Spatial data infrastructure and policy development in Europe and the 799

United States 2004. 800

68. Masser, I. All shapes and sizes: the first generation of national spatial data infrastructures. 801

International Journal of Geographical Information Science 1999, 13, 67–84. 802

69. Dwivedi, R.S. Remote sensing of soils; Vol. 497, Springer, 2017. 803

70. Eckelmann, W.; et al. Soil information for Germany: the 2004 position. Soil Resources of Europe 804

2005, p. 147. 805

71. Lilburne, L.; Hewitt, A.; Webb, T. Soil and informatics science combine to develop S-map: A 806

new generation soil information system for New Zealand. Geoderma 2012, 170, 232–238. 807

https://scholar.google.com
https://dl.acm.org/search/


Version May 23, 2023 submitted to Big Data Cogn. Comput. 26 of 29

72. Niyitegeka, Nshimiyimana, N.N. Machine Learning based Soil Fertility Prediction. International 808

Journal of Innovative Science Engineering & Technology 2021, 8. 809

73. Akpa, S.I.; Odeh, I.O.; Bishop, T.F.; Hartemink, A.E. Digital mapping of soil particle-size 810

fractions for Nigeria. Soil Science Society of America Journal 2014, 78, 1953–1966. 811

74. Pásztor, L.; Szabó, J.; Bakacsi, Z.; Matus, J.; Laborczi, A. Compilation of 1: 50,000 scale digital 812

soil maps for Hungary based on the digital Kreybig soil information system. Journal of Maps 813

2012, 8, 215–219. 814

75. Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, 815
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